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Abstract. In this work, the generalized Bessel functions with their normal-
ization are considered. Various conditions are obtained so that these Bessel

functions have certain geometric properties including close-to-convexity (univa-

lency), starlikeness and convexity in the unit disc. Results obtained for certain
classes are new and for the other classes for which similar results exist in the

literature, examples are given to support that these results are better than the
existing ones.
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1. Introduction

Let A denote the class of analytic functions f defined in the unit disk D that are
normalized by the condition f(0) = 0 = f ′(0)− 1 and S be the subclass of functions
in A that are univalent in the unit disk D = {z : |z| < 1}. A function f ∈ S is
said to be starlike or convex, if f maps D conformally onto domains, respectively,
starlike with respect to origin or convex. The class of such functions are denoted by
S∗ and C respectively. Extension of these classes are S∗(µ) and C(µ) , 0 ≤ µ < 1,
and given by their respective analytic characterization

f ∈ S∗(µ)⇔ Re
(
zf ′(z)
f(z)

)
> µ and f ∈ C(µ)⇔ Re

(
1 +

zf ′′(z)
f ′(z)

)
> µ.

Another important class is known as close-to-convex of order µ with respect to a
particular starlike function and analytically it can be represented as

Re eiη
(
zf ′(z)
g(z)

− µ
)
> 0, g ∈ S∗, z ∈ D,
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for some real η ∈ (−π/2, π/2). The family of all close-to-convex functions of order µ
relative to g ∈ S∗ is denoted by Kg(µ). For particular choice of g, we get particular
class of close-to-convex functions Kg. Note that in this work, we only consider the
case where η = 0. An important fact about the class Kg is that f ∈ Kg implies
f ∈ S in D. More details about these classes can be found in [9] and for their
generalizations, we refer the interested reader to [23].

The functions

(1.1) z,
z

(1− z)
,

z

1− z2
,

z

(1− z)2
and

z

1− z + z2

and their particular rotations
z

1 + z
,

z

1 + z2
,

z

(1 + z)2
and

z

1 + z + z2

are the only nine functions which are starlike univalent and have integer coefficients
in D, (see [13] for details). We note that, it is easy to give sufficient coefficient con-
ditions for f to be close-to-convex, at least when the corresponding starlike function
g(z) takes one of the above forms. In this paper, we only consider z, z/(1− z),
z/(1− z2) and η = 0. Generalization and unification of the coefficient conditions
for these classes is given in [34], by considering the starlike functions z/(1 − z)α,
0 ≤ α ≤ 2.

We are also interested in another important class, introduced in [25], known as
prestarlike of order µ, which is denoted as Rµ. A function f ∈ A is prestarlike of
order µ if and only if Re f(z)

z > 0, z ∈ D for µ = 1,
z

(1−z)2(1−µ) ∗ f(z) ∈ S∗(µ), z ∈ D for 0 ≤ µ < 1.

In particular R1/2 = S∗(1/2) and R0 = C. Here ∗ is the well known Hadamard
product or convolution, defined as (f ∗ g)(z) = z +

∑∞
k=2 akbkz

k, where f(z) =
z +

∑∞
k=2 akz

k and g(z) = z +
∑∞
k=2 bkz

k. For details about these convolution
techniques and the corresponding properties related to the class S, we refer [9, 24].

Among various results of the class Rµ, we list the following:

Lemma 1.1. [26]
(1) For f, g ∈ Rµ, we have f ∗ g ∈ Rµ.
(2) For µ ≤ β ≤ 1, we have Rµ ⊂ Rβ.
(3) For f ∈ S∗(µ), g ∈ Rµ, we have f ∗ g ∈ S∗(µ).
(4) For µ ≤ 1/2, Rµ ⊂ S.

In this work, we also consider a generalization of Rµ given in [28]. A function
f ∈ A is in R[α, µ], if f ∗ Sα ∈ S∗(µ) where Sα = z/(1− z)2−2α, 0 ≤ α < 1. Note
that R[µ, µ] = Rµ.

Finding the relation between various classes of analytic functions is an interesting
research problem and has contributed many results in the past. We are interested
in the following particular problem.

Problem 1.1. For a class of analytic functions F ⊂ A, find sufficient conditions
such that F is starlike, (convex or close-to-convex) in D.
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The answer to this problem is two-fold. One way is to consider a particular class
and find various technique so that F answers Problem 1.1. The class consisting of
all hypergeometric functions z pFq, of the form,

z pFq(a1, . . . , ap; c1, . . . , cq; z) =
∞∑
k=1

(a1)k−1 · · · (ap)k−1

(c1)k−1 · · · (cq)k−1(1)k−1
zk, z ∈ D,

where none of the denominator parameters can be zero or a negative integer and
(a)n is the well known Pochhammer symbol given by (λ)n = λ(λ+ 1)n−1, (λ)0 = 1
is one such example. The search for a solution to this class, with reference to the
Problem 1.1 has a long literature, for example see, [10, 21, 29, 30, 31] and references
therein. Even though, this problem is far from getting completely solved for the
generalized hypergeometric functions pFq, its particular case, p = 2 and q = 1 is
almost solved up to starlike and convex functions (see [17, 18, 33] for details).

Another way is to find various techniques to obtain certain properties for the
general class F and using these properties to deduce the applications for various
types of functions like pFq and polylogarithms. Among various techniques used,
Fejer’s coefficient criterion [11], Vietoris’ coefficient condition [15, 27], differential
subordination [3, 4, 8, 19, 32], Jack’s lemma [9, 14], and duality techniques [25] are
of interest to many researchers in this field. One another way is to find the positivity
conditions of certain finite sums [1, 16, 20] and using it to deduce the conditions for
the geometric behaviour of the class F . In this work, for a particular class of F ,
we use the results obtained in [20], using the technique of positivity of certain finite
sums.

The following result is given in [20].

Lemma 1.2. [20] Let α ≥ 0,γ ≥ 1 and a0, a1, a2, . . . be a sequence of positive
numbers such that

2a1 ≤ a0, (2 + α)γa2 ≤ a1, (k + 1 + α)γak+1 ≤ (k + α)γak, k ≥ 2.

Then for all 0 < φ < π and for all k ∈ N, the following inequalities hold:
1. a0

2 +
∑n
k=1 ak cos kφ > 0.

2.
∑n
k=1 ak sin kφ > 0.

Lemma 1.2 is generalization of earlier results obtained by [1] and [5]. We also
remark that Lemma 1.2 is also true, if we replace ak by rkak, 0 ≤ r < 1. In [20],
using Lemma 1.2, a sufficient condition on ak such that the normalized analytic
function f(z) = z +

∑∞
k=2 akz

k are close-to-convex with respect to starlike function
z, z/(1 − z), z/(1 − z2) are found. In what follows, together with these results, we
also mention the result which gives the condition for which f(z) is starlike of order µ.

Lemma 1.3. [20, Theorem 4.1] Let {ak}∞k=1 be a sequence of positive real number
such that a1 = 1, a1 ≥ 2a2. Suppose that, for 1 ≤ γ < 2 2a2 ≥ 2γ(3a3) and
k(k − 1 − γ)ak ≥ (k − 1)(k + 1)ak+1, ∀k ≥ 3. Then, f(z) = z +

∑∞
n=2 akz

k is
close-to-convex with respect to both the starlike functions z and z/(1− z). Further,
for the same condition f is starlike univalent.

Corollary 1.1. Let {ak}∞k=1 be a sequence of positive real number such that 1 = a1 ≥
2a2 ≥ 6a3 and k(k−2)ak ≥ (k−1)(k+1)ak+1, ∀k ≥ 3. Then f(z) = z +

∑∞
n=2 akz

k
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is close-to-convex with respect to both the starlike functions z and z/(1−z). Further
that, for the same condition f is starlike univalent.

Lemma 1.4. [20, Theorem 4.3] Let {ak}∞k=1 be a sequence of positive real numbers
such that a1 = 1. For 0 ≤ µ < 1, let

(1) (1− µ)a1 ≥ (2− µ)a2 ≥ 2(µ+1)(3− µ)a3,
(2) (k − 1− µ)(k − µ)ak ≥ k(k + 1− µ)ak+1,∀k ≥ 3,

then f(z) = z +
∑∞
k=2 akz

k ∈ S∗(µ).

Lemma 1.5. [20, Theorem 4.4] Let {ak}∞k=1 be a sequence of positive real numbers
such that a1 = 1. Suppose that, a1 ≥ 8a2, and (k − 1)ak ≥ (k + 1)ak+1,∀k ≥ 2.
Then, f(z) = z +

∑∞
k=2 akz

k is close-to-convex with respect to the starlike function
z/(1− z2).

2. The generalized class of Bessel functions

As mentioned earlier, we are interested in finding one particular class of F such that
it addresses Problem 1.1. In this context, many results are available in the liter-
ature regarding the generalized hypergeometric functions, polylogarithms [10, 21,
31]. Here, to differ from this usual practice, we are interested in considering certain
class of functions that are related to the well known Bessel functions. Consider the
differential equation

(2.1) z2w′′(z) + bzw′(z) + [cz2 − p2 + (1− b)p]w(z) = 0

where b, c, p ∈ C. The differential equation (2.1) is known as the generalized Bessel
differential equation. For a particular value of b and c, the differential equation (2.1)
reduces to (i) Bessel (b = 1 = c), (ii) Modified Bessel (b = 1, c = −1) and (iii)
Spherical Bessel (b = 2, c = 1) differential equations. A particular solution of the
equation (2.1), known as generalized Bessel function of the first kind of order p, can
be given as

(2.2) wp(z) =
∞∑
k=0

(−1)kck

k!Γ(p+ k + b+1
2 )

.
(z

2

)2k+p

, z ∈ C.

The study of the geometric properties such as univalency, starlikeness, convexity of
wp(z) permit us to study the geometric properties of Bessel, modified Bessel and
spherical Bessel functions together. For further details, we refer the interested read-
ers to [6, 7] and to the references therein. To study the convexity and univalency of
the generalized Bessel functions, in [6, 7] wp(z) was normalized by the transforma-
tion up(z) = [a0(p)]−1z−p/2wp(

√
z). It is easy to see that the series representation

of up(z) is

(2.3) up(z) = 0F1

(
κ,−cz

4

)
=
∑
k≥0

(−1)kck

4k(κ)k
zk

k!

where κ = p+ (b+ 1)/2 6= 0,−1,−2,−3 · · · .
Further that the function up(z) is analytic in D and satisfies the differential equa-

tion

(2.4) 4z2u′′(z) + 4κzu′(z) + czu(z) = 0.



Geometric Properties of Generalized Bessel Functions 183

Now, we list few results given in [6] for the geometric properties such as univalency,
starlikeness, convexity for the function up in D that are useful for further discussion.

Lemma 2.1. [6] If 0 ≤ µ < 1/2 and b, p, c ∈ R, then the following assertions are
true:

(i) If 4κ ≥ (1− µ)(1− 2µ)−1/2|c|+ 1, then Reup(z) ≥ µ for all z ∈ D;
(ii) If 4κ ≥ (1 − µ)(1 − 2µ)−1/2|c| and c 6= 0, then up(z) is close-to-convex of

order µ in D.

Lemma 2.2. [6] If 0 ≤ µ < 1 and b, p, c ∈ R such that c 6= 0 and 4µ2+(|c|−6)µ+2 ≥
0, then the functions wp and up have the following properties:

(i) If 4(1− µ)κ ≥ |c|+ 2(1− µ)(1− 2µ), then up(z) is convex of order µ in D;
(ii) If 4(1−µ)κ ≥ |c|+ 2(1−µ)(3− 2µ), then zup(z) is starlike of order µ in D;
(iii) If If 4(1−µ)κ ≥ |c|+2(1−µ)(3−2µ) and µ 6= 0, then z(2(1−µ)−p)/(2µ)wp(z1/(2µ))

is starlike in D.

For a function f ∈ S, the Alexander transform is defined as Λf (z) :=
∫ z
0
f(t)
t dt.

Lemma 2.3. [6] Let c < 0 and b, p ∈ R, then ΛUp is close-to-convex with respect to
starlike functions z and z/(1− z) if 4κ > −(c+ 2) +

√
c2/2− 4c+ 4. Further ΛUp

is also starlike. Here Up is given by (2.5).

In this work we normalize wp(z) by the transformation

(2.5) Up(z) = z0F1(κ,−cz
4

) = [a0(p)]−1z1−p/2wp(
√
z) = z +

∞∑
k=2

bkz
k,

where
bk+1 = − c

4k(κ+ k − 1)
bk, k ≥ 1.

Clearly, Up(0) = 0 = U ′p(0) − 1 and Up(z) = zup(z). The reason behind the
consideration of Up(z) is the fact that the geometric property of an analytic function
f(z) in D normalized by f(0) = 1, may not be inherited by zf(z). For example,
consider the function 1 + z, which is convex but it’s normalization f(z) = z + z2 is
not even univalent in D as f ′(−1/2) = 0.

Lemma 2.4. [6] If b, p, c ∈ C such that κ = p+ (b+ 1)/2 6= 0,−1,−2,−3, . . . , and
z ∈ C, then for the normalized generalized Bessel function of the first kind of order
p, we have the following recurrence relation

(2.6) 4κu′p(z) = −cup+1(z)

In Section 3, we find the conditions under which Up(z) and up(z) are close-to-
convex with respect to particular starlike functions. We restrict ourselves in finding
only the starlikeness and convexity of Up(z), since we are interested only in the nor-
malized case. In Section 4, we find conditions under which Up(z) is in the class of
prestarlike functions. Results related to a particular integral transform is discussed
in Section 5. We also provide examples in the next section to show that our result
are better than the results available in the literature, at least for the case c < 0.
Moreover, there seems to be not many results for the case of prestarlike functions
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related to Bessel functions in the literature. Further, since the modified Bessel func-
tions is in fact just the Bessel function with imaginary argument, and consequently
it maps the unit disk into same domain as the Bessel function, as we have better
range for modified Bessel function, we can claim that our result is also better for
Bessel functions.

3. Close-to-convexity, starlikeness and convexity of generalized Bessel
functions

We give one of our main results that answers Problem 1.1, whose proof is given in
Section 6.

Theorem 3.1. Let c < 0, 0 ≤ µ < 1 and p, b ∈ R. Further, if for α ≥ 0,
[(2 + α)µ+1(1− µ)− 2]c+ 8(1− µ) ≥ 0. Then the following are true.

(1) Reup, n(z) > µ in D for 4(1− µ)κ ≥ −c.
(2) up(z) is close-to-convex of order µ in D for 4(1− µ)κ ≥ −c− 4(1− µ).

where up, n(z) =
∑n
k=0

(−c)k
4k(κ)k

zk

k! .

Since for α = 0, we have [(2 + α)µ+1(1 − µ) − 2] < 0, the following results are
immediate.

Corollary 3.1. Let c < 0 and p, b ∈ R.
(1) Reup, n(z) > µ in D for 4(1− µ)κ ≥ −c.
(2) up(z) is close-to-convex of order µ in D for 4(1− µ)κ ≥ −c− 4(1− µ).

Remark 3.1. By Lemma 2.1, for 0 ≤ µ < 1/2, if 4κ ≥ (1 − µ)(1 − 2µ)−1/2|c| and
c 6= 0, then we have up(z) is close-to-convex of order µ. Lemma 2.1 does not say
anything when µ ≥ 1/2. Whereas Corollary 3.1 implies that up(z) is close-to-convex
of order µ, for 0 ≤ µ < 1 if κ ≥ − 1

4(1−µ)c− 1 and c < 0.
Now for 0 ≤ µ < 1/2 and c < 0(
− (1− µ)

(1− 2µ)1/2
c

)
−
(
− 1

4(1− µ)
c− 1

)
= −

[
(1− µ)

4(1− 2µ)1/2
− 1

4(1− µ)

]
c+ 1 ≥ 0,

as

(1− µ)2 − (1− 2µ)1/2 = (1− 2µ)2 + 2µ(1− 2µ) + µ2 − (1− 2µ)1/2 ≥ 0.

Therefore, we have (
− (1− µ)

(1− 2µ)1/2
c

)
≥
(
− 1

4(1− µ)
c− 1

)
and hence Theorem 3.1(Corollary 3.1) is better than the Lemma 2.1 when c < 0, in
the sense that Theorem 3.1 gives better range of κ.

Corollary 3.2. Let c < 0 and b ∈ R. Then for p ≥ p1, up(z) is close-to-convex of
order µ in D, where p1 = − ((b+ 3)/2− c/4(1− µ)).

Similar to class up, results for the class Up can be obtained and we state this as
a theorem, whereas its proof is given in Section 6.
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Theorem 3.2. Let c < 0 and b, p ∈ R such that κ ≥ −c/2. Then Up(z) is close-to-
convex with respect to starlike function z and z/(1− z).

Further Up(z) is also starlike under the same condition.

Remark 3.2. In [6, Theorem 4.1], using a result given in [22], it has been proved
that UP (z) is close-to-convex with respect to z/(1−z) with the condition κ > −c/2.
Theorem 3.2 extends this result for starlike functions also.

In the case of close-to-convexity of Up(z) with respect to z/(1 − z2), consider
Up(z) as Up(z) = z +

∑∞
k=2 akz

k, where

(3.1) a1 = 1, a2 = − c

4κ
and ak+1 = − c

4k(κ+ k − 1)
ak, ∀k ≥ 2.

Since, a1 − 8a2 = 1 + 2c/κ ≥ 0 and it s easy to verify that, for k ≥ 2, (k − 1)ak −
(k + 1)ak+1 ≥ 0, the following result is a consequence of Lemma 1.5. We omit the
details of the proof.

Theorem 3.3. Let c < 0 and b, p ∈ R such that κ ≥ −2c. Then UP (z) is close-to-
convex w.r.to starlike function z/(1− z2)

We answer, the remaining part of Problem 1.1, concerning the starlikeness and
convexity of Up(z), in the following results.

Theorem 3.4. Let c < 0, 0 ≤ µ < 1 and p, b ∈ R. If 4(1 − µ)κ ≥ −(2 − µ)c, then
Up(z) is starlike of order µ in D.

Proof. It is enough to verify that Up(z) satisfies conditions given in Lemma 1.4. As
before, consider Up(z) = z +

∑∞
k=2 akz

k, where {ak} satisfies (3.1). By a simple
calculation, we observe that

4(1− µ)κ ≥ −(2− µ)c implies (1− µ)a1 ≥ (2− µ)a2,

and

(2− µ)a2 − 2(µ+1)(3− µ)a3 =
a2

8(κ+ 1)

(
8(2− µ)(κ+ 1) + 2(µ+1)(3− µ)c

)
≥ a2

8(1− µ)(κ+ 1)

(
−2(2− µ)2 + 2(µ+1)(3− µ)(1− µ)

)
c

≥ 0.

Now, let (k − 1− µ)(k − µ)ak − k(k + 1− µ)ak+1 = A(k)M(k), where

A(k) =
ak

4k(κ+ k − 1)

M(k) = 4k(κ+ k − 1)(k − 1− µ)(k − µ) + ck(k + 1− µ) =
5∑
i=1

Ti(k − 3)i

where T1 = 4 and T2 = (40 + 4κ− 8µ) > 0,

T3 = 60(1− µ) + 8(1− µ)κ+ c+ 24κ+ 88 + 4µ2 ≥ 0,

T4 = 148(1− µ) + 44(1− µ)κ+ (7− µ)c+ 40κ+ 4µ2(5 + κ) + 92 ≥ 0,

T5 = 120(1− µ) + 60(1− µ)κ+ (12− 3µ)c+ 12κ+ 12µ2(2 + κ) + 24 ≥ 0,
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M(k) is an increasing function in k ≥ 3. Further that M(3) > 0 implies that
(k − 1− µ)(k − µ)ak ≥ k(k + 1− µ)ak+1, ∀k ≥ 3. This verifies the fact that {ak}
satisfies the hypothesis of Lemma 1.4, and the proof is complete.

By applying Alexander type theorem, which gives Up(z) ∈ C(µ) if and only if
zU ′p(z) ∈ S∗(µ), and using Theorem 3.4, we have the following result.

Theorem 3.5. Let c < 0, 0 ≤ µ < 1 and p, b ∈ R. If 2(1 − µ)κ ≥ −(2 − µ)c, then
Up(z) is convex of order µ in D.

With the failure of Mandelbrojt-Schiffer conjecture [2], namely S ∗ S ⊂ S, the
proof of Pólya-Schoenberg conjecture and its extension [24], took the center stage
of the study of univalent functions, by which the following result is immediate.

Corollary 3.3. Assume the hypothesis of Theorem 3.4 (Theorem 3.5). Then for
any f(z) ∈ C(µ), f(z) ∗ Up(z) ∈ S∗(µ) or C(µ).

Corollary 3.4. Let c < 0, 0 ≤ µ < 1 and b ∈ R. If

p ≥ p1 = − (2− µ)c
4(1− µ)

− 1
2

(b+ 1),

and

p ≥ p2 = − (2− µ)c
2(1− µ)

− 1
2

(b+ 1)

then Up(z) is respectively starlike of order µ and convex of order µ in D.

For b = 1, c = −1, the generalized Bessel differential equation reduces to the
Modified Bessel differential equation and it’s solution is known as the modified Bessel
function. Modified Bessel function of the first kind of order p is denoted as Ip(z),
which is given as

Ip(z) =
∞∑
k=1

1
k! Γ(p+ k + 1)

(z
2

)2k+p

.

Example 3.1. Denote Ip(z) = 2pΓ(p + 1)z1−pIp(
√
z), the normalized modified

Bessel functions of first kind of order p, then by Theorem 3.4 and Theorem 3.5, Ip(z)
is starlike and convex of order µ when p ≥ (3µ− 2)/4(1− µ) and p ≥ µ/(2(1− µ))
respectively.

Remark 3.3. Theorem 3.4 asserts that Up(z) is starlike of order µ, if κ ≥ −(2− µ)c/
4(1− µ) and c < 0 while by Lemma 2.2(ii), κ ≥ |c|/4(1− µ) + (3− 2µ)/2, c 6= 0.
Since for c < 0,(
− 1

4(1− µ)
c+

(3− 2µ)
2

)
−
(
− (2− µ)

4(1− µ)
c

)
=
[

(2− µ)
4(1− µ)

− 1
4(1− µ)

]
c+

(3− 2µ)
2

=
1
4
c+

(3− 2µ)
2

≥ 0

if c ≥ −2(3− 2µ).
Hence Theorem 3.4 is better than the Lemma 2.2(ii) for c ∈ [−2(3− 2µ), 0]. Now

in particular for b = 1, c = −1, we have the modified Bessel function Ip(z). Hence
by taking κ = p+ (b+ 1)/2 Theorem 3.4 gives the modified Bessel function of order
p ≥ (3µ− 2)/4(1− µ) is starlike of order µ, while by Lemma 2.2(ii), Ip(z) is starlike
of order µ if p ≥ (2 + (1− µ))/(1− 2µ)4(1− µ) ≥ (3µ− 2)/4(1− µ).
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4. Prestarlikeness of generalized Bessel functions

Due to the fact that, results related to prestarlike functions are very much limited
in the literature, we extend the question of Problem 1.1 to the class of prestarlike
functions also.

Theorem 4.1. Let c < 0 and p, b ∈ R. Then Up(z) ∈ R[α, µ] if for 0 ≤ µ < 1,

4(κ+ 1) ≥


T1(α, µ)c+ 4, 0 ≤ α ≤ α1(µ),

max
{
T1(α, µ)c+ 4, T2(α, µ)c, T3(α, µ)c− 4

}
, α1(µ) ≤ α < 1.

where,

T1(α, µ) = −2(1− α)(2− µ)
1− µ

, T2(α, µ) = −2µ−1(3− µ)(3− 2α)
2− µ

.

T3(α, µ) = −2(4− µ)(2− α)
3(2− µ)(3− µ)

, α1(µ) = 1− 2µ(1− µ)(3− µ)
4(2− µ)2 − 2.2µ(1− µ)(3− µ)

.

Proof. Consider the function g(z) = z +
∑∞
k=2 bkz

k, where bk is given as

b1 = 1, bk+1 = − c(k + 1− 2α)
4k2(κ+ k − 1)

bk, ∀k ≥ 1.

Let for c < 0, 0 ≤ µ, α < 1 and p, b ∈ R
(4.1) 4(κ+ 1) ≥ max {T1(α, µ)c+ 4, T2(α, µ)c, T3(α, µ)c− 4} ,
Clearly 4(κ+1) ≥ T1(α, µ)c+4, which is equivalent to 2(1−µ)κ ≥ −(1−α)(2−µ)c.

Hence, (1− µ)b1 − (2− µ)b2 = 1
2κ

[
2(1− µ)κ+ (1− α)(2− µ)c

]
≥ 0. Again

(2− µ)b2 − 2µ+1(3− µ)b3 =
b2

4(κ+ 1)

[
4(2− µ)(κ+ 1) + 2µ−1(3− µ)(3− 2α)c

]
=
b2(2− µ)
4(κ+ 1)

[
4(κ+ 1)− T2(α, µ)c

]
≥ 0.

Let us consider

A(α, µ) = 8(4− µ)(κ+ 1) + c+ 4(µ2 − 13µ+ 29)(4.2)

B(α, µ) = 4(µ2 − 11µ+ 21)(κ+ 1) + (8− 2α− µ)c+ 4(4µ2 − 26µ+ 39)(4.3)

D(α, µ) = 12(2− µ)(3− µ)(κ+ 1) + 2(2− α)(4− µ)c+ 12(2− µ)(3− µ)(4.4)

Now if 4(κ+ 1) ≥ T3(α, µ)c− 4, then clearly D(α, µ) ≥ 0 and

3(2− µ)(3− µ)A(α, µ)

= 24(2− µ)(3− µ)(4− µ)(κ+ 1) + 3(2− µ)(3− µ)
[
c+ 4(µ2 − 13µ+ 29)

]
≥
[
3(2− µ)(3− µ)− 2(2− α)(4− µ)2

]
c+ 12(2− µ)(3− µ)

[
(µ2 − 13µ+ 29)− 1

]
,

>

[
3(2− µ)(3− µ)− 2(4− µ)2

]
c− 2

[
(1− α)(4− µ)2

]
c ≥ 0,
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as c < 0 and for all 0 ≤ µ < 1, [3(2 − µ)(3 − µ) − 2(4 − µ)2] < 0. This gives
A(α, µ) ≥ 0. Similarly,

3(2− µ)(3− µ)B(α, µ)

= 12(2− µ)(3− µ)(µ2 − 11µ+ 21)(κ+ 1)

+ 3(2− µ)(3− µ)
[
(8− 2α− µ)c+ 4(4µ2 − 26µ+ 39)

]
=
[
3(2− µ)(3− µ)(8− 2α− µ)− 2(µ2 − 11µ+ 21)(2− α)(4− µ)

]
c

+ 12(2− µ)(3− µ)
[
(4µ2 − 26µ+ 39)− 1

]
>

[
3(2− µ)(3− µ)(8− 2α− µ)− 2(µ2 − 11µ+ 21)(2− α)(4− µ)

]
c

=
[
3(8− µ)(2− µ)(3− µ)− 2(µ2 − 11µ+ 21)(4− µ)

]
c

− 2(µ2 − 11µ+ 21)(1− α)(4− µ)c− 6α(2− µ)(3− µ)c ≥ 0,

which implies B(α, µ) ≥ 0.
Now for k ≥ 3, consider (k − 1 − µ)(k − µ)bk − k(k + 1 − µ)bk+1 = A(k)M(k),

where

A(k) =
bk

4k(κ+ k − 1)
and

M(k) = 4k(κ+ k − 1)(k − 1− µ)(k − µ) + c(k + 1− µ)(k + 1− 2α)

= 4(k − 3)4 + 4(κ− 2µ+ 20)(k − 3)3 +A(α, µ)(k − 3)2

+B(α, µ)(k − 3) +D(α, µ).

Here A(α, µ), B(α, µ), D(α, µ), are non-negative expressions as given in (4.2), (4.3),
(4.4) respectively. Since each coefficient of (k− 3) and the constant term D(α, µ) in
the expression on M(k) are non-negative, we have M(k) as an increasing function
for k ≥ 3. Since M(3) > 0, we have (k − 1− µ)(k − µ)bk ≥ k(k + 1− µ)bk+1.

Thus bk satisfies the hypothesis of Lemma 1.4, and hence g(z) ∈ S∗(µ). By a
simple calculation one can observe that

g(z) = Up(z) ∗
z

(1− z)2−2α
.

Therefore by definition of R[α, µ], we have Up(z) ∈ R[α, µ]. Now

T1(α, µ)− T3(α, µ) =
2(4− µ)(2− α)
3(2− µ)(3− µ)

− 2(1− α)(2− µ)
(1− µ)

=
2(4− µ)(1− µ)(2− α)− 6(2− µ)2(3− µ)(1− α)

3(1− µ)(2− µ)(3− µ)
.

One can easily verify that for 0 ≤ α ≤ α0(µ), the numerator is negative for all µ
and hence T1(α, µ) ≤ T3(α, µ). Similarly if 0 ≤ α ≤ α1(µ), T1(α, µ) ≤ T2(α, µ) for
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all µ. Here,

α0(µ) = 1− (4− µ)(1− µ)
3(2− µ)2(3− µ)− (4− µ)(1− µ)

,

α1(µ) = 1− 2µ(1− µ)(3− µ)
4(2− µ)2 − 2.2µ(1− µ)(3− µ)

.

Clearly, we can conclude that, for 0 ≤ α ≤ min{α0(µ), α1(µ)},

min
i=1,2,3

{Ti(α, µ)} = T1(α, µ) implies max
i=1,2,3

{Ti(α, µ)c} = T1(α, µ)c, ∀c < 0.

To complete the proof we only need to check that min{α0(µ), α1(µ)} = α1(µ). Since

α1 − α0 =
(4− µ)(1− µ)

3(2− µ)2(3− µ)− (4− µ)(1− µ)
− 2µ(1− µ)(3− µ)

4(2− µ)2 − 2.2µ(1− µ)(3− µ)

=
N(µ)

(3(2− µ)2(3− µ)− (4− µ)(1− µ)) (4(2− µ)2 − 2.2µ(1− µ)(3− µ))

where

N(µ) = 4(2− µ)2(4− µ)(1− µ)−2µ(1− µ)2(3− µ)(4− µ)

− 32µ(1− µ)(2− µ)2(3− µ)2

< 4(2− µ)2(1− µ)
[
(4− µ)− 32µ(3− µ)2

]
< 0.

Therefore, α1(µ) = min{α0(µ), α1(µ)}, and the proof is complete.

Theorem 4.2. Let c < 0, 0 ≤ µ < 1 and p, b ∈ R. If 2κ ≥ −(2− µ)c, then Up(z) is
prestarlike of order µ in D.

Proof. Consider Ti(α, µ), i = 1, 2, 3, as given in the hypothesis of Theorem 4.1. Now
for α = µ, we have T1(µ) = −2(2− µ),

T2(µ) = −2µ−1(3− µ)(3− 2µ)
(2− µ)

and T3(µ) = −2(4− µ)
3(3− µ)

.

Note that for 0 ≤ µ < 1,

T2(µ) = −2µ−1(3− µ)(3− 2µ)
(2− µ)

> − (3− µ)(3− 2µ)
2(2− µ)

and hence

T2(µ)− T1(µ) > − (3− µ)(3− 2µ)
2(2− µ)

+ 2(2− µ)

=
2µ2 − 7µ+ 7

2(2− µ)
> 0.

Similarly,

T3(µ)− T1(µ) = −2(4− µ)
3(3− µ)

+ 2(2− µ)

=
6µ2 − 28µ+ 28

3(3− µ)
> 0.
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Therefore, T1(µ) is the minimum one. Hence for all c < 0,

4(κ+ 1) ≥ max{T1(µ)c+ 4, T2(µ)c, T3(µ)c− 1} = T1(µ)c+ 4.

which is equivalent to 2κ ≥ −(2− µ)c.
The following results are immediate consequences of Lemma 1.1.

Corollary 4.1. Assume the hypothesis of Theorem 4.2, then for any f ∈ S∗(µ), we
have f ∗ Up(z) ∈ S∗(µ).

Corollary 4.2. Let c < 0, p, b ∈ R,
(1) Up(z) ∈ S∗(1/2) if κ ≥ − 3

4c.
(2) Up(z) ∈ C if κ ≥ −c.

Corollary 4.3. Let c < 0, b ∈ R, 0 ≤ µ < 1. Then Up(z) is prestarlike of order µ
if p ≥ p1, where p1 = −(1− µ

2 )c− (b+ 1). In particular, Ip is prestarlike of order µ
for p ≥ −µ2 − 1.

5. Alexander transform of generalized Bessel functions

The Alexander transform of a function f(z) ∈ S is defined as Λf (z) ≡
∫ z
0
f(t)
t dt. It

is easy to find [9, p. 257] that there exist functions f ∈ S for which the Alexander
transform Λf (z) is not univalent in D. On the other hand, many results available
in the literature for the starlikeness of the Alexander transform of non-univalent
functions. For example,

Re f ′(z) > −δ =⇒ Λf (z) ∈ S∗

with the best possible value of δ is δ = 1−2 log 2
2−2 log 2 , is given in [12]. Hence, it will

be interesting to find the conditions under which the Alexander transform of the
generalized Bessel function has the geometric properties under consideration.

Since ΛUP (z) = z +
∑∞
k=2 bkz

k with b1 = 1, ak = kbk, ∀k ≥ 2, where ak as
given in (3.1). For ΛUP (z) to be close-to-convex with respect to z and z/(1− z), it
is enough to verify that {bk} satisfies the hypothesis of Corollary 1.1. This follows
from an easy and direct computation and we state the result as:

Theorem 5.1. Let c < 0 and b, p ∈ R, then the Alexander transform ΛUP (z) is
close-to-convex with respect to starlike function z and z/(1−z) if κ > −c/4. Further
ΛUP (z) is also starlike.

Remark 5.1. Since for c < 0, −(c + 2) +
√
c2/2− 4c+ 4 > −c. Hence Theorem

5.1 gives better range of κ than the Lemma 2.3.

Corollary 5.1. Let c < 0, b ∈ R. Then the Alexander transform of Up(z) is starlike
univalent for p ≥ p1 where p1 = −c/4 − (b + 1)/2. In particular the Alexander
transform of normalized modified Bessel function Ip(z) is starlike univalent for p ≥
−3/4.



Geometric Properties of Generalized Bessel Functions 191

6. Proofs of Theorems 3.1 and 3.2

6.1. Proof of Theorem 3.1.

Let γ = µ+ 1, then clearly 1 ≤ γ < 2. Consider, for 0 ≤ r < 1 and 0 ≤ θ ≤ 2π,

Re
up,n(z)− µ

1− µ
=
a0

2
+

n∑
k=1

rkak cos kθ,

where

a0 = 2, a1 =
−c

4(1− µ)κ
, and ak+1 =

−c
4(k + 1)(κ+ k)

ak, ∀k ≥ 1.

Let, 4(1− µ)κ ≥ −c, then clearly a0 ≥ 2a1 and

(1− µ)
[
a1 − (2 + α)γa2

]
= a1(1− µ)

[
1 + (2 + α)γ

c

8(κ+ 1)

]
=

a1

8(κ+ 1)
[8(1− µ)(κ+ 1) + (1− µ)(2 + α)γc]

≥ a1

8(κ+ 1)

[
8(1− µ) +

(
(1− µ)(2 + α)γ − 2

)
c

]
≥ 0.

By a simple calculation, we have(
1 +

1
k + α

)−γ
≥
[
1− γ

k + α

]
, ∀k ≥ 2.

Hence for all k ≥ 2,

(k + α)γak − (k + 1 + α)γak+1

≥ (k + 1 + α)γak

[(
1− γ

k + α

)
+

c

4(k + 1)(κ+ 1)

]
= A(k)M(k),

where

A(k) =
(k + 1 + α)γak

4(k + 1)(k + α)(κ+ 1)
and

M(k) = 4(k + 1)(κ+ k)(k + α− γ) + c(k + α) =
4∑
i=1

Ti(k − 2)i

with

T1 = 4, T2 = (40 + 4κ+ 4α− 4γ) > 0,

T3 = 28(2− γ) + 4κ(2− γ) + c+ 20κ+ 4κα+ 28α+ 76 ≥ 0 and

T4 = 48(3− γ) + 16κ(2− γ) + 3c+ (48 + 16A+ c)α ≥ 0.

Hence for k ≥ 2, M(k) is increasing and M(2) ≥ 0, which implies that (k+α)γak ≥
(k + 1 + α)γak+1, ∀k ≥ 2.

Therefore {ak} satisfies the hypothesis of Lemma 1.2. By the fact cos k(2π−θ) =
cos kθ, 0 ≤ θ ≤ 2π and the minimum principle for harmonic functions, we have

Re
up, n(z)− µ

1− µ
> 0 implies Reup, n(z) > µ.
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By the first hypothesis of the theorem, Reup+1, n(z) > 0, if 4(1 − µ)κ ≥ −c −
4(1− µ). Therefore by using relation (2.6), we have

Re
(
− 4κ

c
u′p, n(z)

)
= Reup+1, n(z) > 0.

By definition of close-to-convexity, up, n(z) is close-to-convex with respect to starlike
function − c

4κz. Due to the fact that the family of all close-to-convex function with
respect to a particular starlike function is normal, up(z) = limn→∞ up, n(z) is also
close-to-convex with respect to starlike function −cz/4κ and the proof is complete.

6.2. Proof of Theorem 3.2.

Since Up(z) = z +
∑∞
k=2 akz

k with {ak} satisfying (3.1), it is enough to prove that
ak satisfies the hypothesis of Lemma 1.3. Clearly, for κ ≥ − c

2 , a1 ≥ 2a2 and

2a2 − 6a3 =
a2

8(κ+ 1)
[16(κ+ 1) + 6c]

≥ a2

8(κ+ 1)
(−8c+ 6c) = − a2c

4(κ+ 1)
> 0.

Again for k ≥ 3, consider

k(k − 2)ak − (k − 1)(k + 1)ak+1 = A(k)M(k)

where A(k) = ak/4k(κ+ k − 1) and

M(k) = 4k2(κ+ k − 1)(k − 2) + c(k − 1)(k + 1)

≥ 2k2(2(k − 1)− c)(k − 2) + c(k − 1)(k + 1)

= 4(k − 3)4 + (36− 2c)(k − 3)3 + (116− 13c)(k − 3)2

+ (56− 12c)(k − 3) + (72− 10c).(6.1)

One can easily observe that all the coefficients of (k − 3) and the constant term in
(6.1) are non-negative for c < 0. Hence {ak}∞k=1 satisfies the hypothesis of Corollary
1.1 and we have the conclusion.
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